已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是_.

问题描述:

已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______.

由x2+xy+y2-2=0得:x2+2xy+y2-2-xy=0,
即(x+y)2=2+xy≥0,所以xy≥-2;
由x2+xy+y2-2=0得:x2-2xy+y2-2+3xy=0,
即(x-y)2=2-3xy≥0,所以xy≤

2
3

∴-2≤xy≤
2
3

∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥
2
3
×(-2),即-
4
3
≤-2xy≤4,
两边同时加上2得:-
4
3
+2≤2-2xy≤4+2,即
2
3
≤2-2xy≤6,
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是
2
3
≤M≤6.
故答案为:
2
3
≤M≤6