求值域y=√(2x²-6x+9)+√(2x²-10x+17)
问题描述:
求值域y=√(2x²-6x+9)+√(2x²-10x+17)
先是化成y=√(X-0)²+(X-3)² + √(X-1)²+(X-4)²
然后怎么用几何意义来理解?答案是(2√5,+∞)
答
很简单:可以看成是 动点(x,y)到(3,0)和(4,1)的距离之和,最小距离是:
√4²+2²=2√5