有个方程的规律是:x+x分之2=a+a分之2解这个方程x-1分之x的平方-x+2=a+a-1分之2

问题描述:

有个方程的规律是:x+x分之2=a+a分之2解这个方程x-1分之x的平方-x+2=a+a-1分之2

应该是
x+2/x=a+2/a
则x=a,x=2/a
(x²-x+2)/(x-1)=a+2/(a-1)
x(x-1)/(x-1)+2/(x-1)=a+2/(a-1)
x+2/(x-1)=a+2/(a-1)
两边减去1
(x-1)+2/(x-1)=(a-1)+2/(a-1)
所以x-1=a-1,x-1=2/(a-1)
x=a,x=1+2/(a-1)
即x=a,x=(a+1)/(a-1)