如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H
问题描述:
如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H
求证:AH⊥BC
第3和第4题
答
证明:
OA与OH共线,所以向量AO与向量BC的数量积为0即可证出AH⊥BC
我用AB表示向量AB,即此时字母AB都有方向性,下边的都是如此,
2AO=AG+GE
过A作直线BC的平行线交FG于M,交DE于N,
2AO*BC
=(AG+AE)*BC
=AG*BC+AE*BC
=-|AG||BC|cos∠GAM+|AE||BC|cos∠EAN
=|BC|*(-|AB|*sin∠MAB+|AC|*sin∠NAC)
=|BC|*(-|AB|sin∠ABC+|AC|sin∠ACB)
设BC上的高长为h,
上式=|BC|(-h+h)=0
所以AO与BC垂直,即AH⊥BC