如图,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.

问题描述:

如图,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.

HE=HF.理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.∵四边形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°,又∵AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴AG:EP=AB...
答案解析:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据三角形相似和全等三角形的判定和性质即可解题.
考试点:相似三角形的判定与性质;全等三角形的判定与性质.
知识点:本题考查了三角形相似的判定以及性质的综合应用,兼顾了全等三角形的证明以及全等三角形对应边相等的性质,本题中求证三角形相似是解题的关键.