若f(x)=2x^3-3x^2+ax+b除以x+1所得的余数为7,除以x-1所得的余数为5,试求a,b的值
问题描述:
若f(x)=2x^3-3x^2+ax+b除以x+1所得的余数为7,除以x-1所得的余数为5,试求a,b的值
答
f(x)=2x^3-3x^2+ax+b
=2x^3+2x^2-5x^2+ax+b
=2x^2*(x+1)-5x^2-5x+5x+ax+b
=2x^2*(x+1)-5x(x+1)+(a+5)x+(a+5)-a-5+b
=2x^2*(x+1)-5x(x+1)+(a+5)(x+1)+(b-a-5)
所以:b-a-5=7 --------------(1)
f(x)=2x^3-3x^2+ax+b
=2x^3-2x^2-x^2+ax+b
=2x^2*(x-1)-x^2+x+(a-1)x+b
=2x^2*(x-1)-x(x-1)+(a-1)(x-1)+(b+a-1)
所以:a+b-1=5 -------------- (2)
联立(1),(2)得:
a=-3,b=9