如图,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于点M.求证:AM=1/2(AB+AC).

问题描述:

如图,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于点M.求证:AM=

1
2
(AB+AC).

证明:延长AM至N,使DM=MN,连接CN,∵CM⊥AD,DM=MN,∴CN=CD,∴∠CDN=∠DNC,∴∠DNC=∠ADB,∵AD=AB,∴∠B=∠ADB,∴∠B=∠ANC,∵∠BAD=∠CAD,∴∠ADB=∠ACN,∴∠ANC=∠ACN,∴AN=AC,∴AB+AC=AD+AN=AD+AM+M...