已知方程x2+4ax+3a+1=0(a>1)的两根为tanα,tanβ且α,β∈(−π2,π2),则tanα+β2=(  ) A.12 B.-2 C.43 D.12或-2

问题描述:

已知方程x2+4ax+3a+1=0(a>1)的两根为tanα,tanβ且α,β∈(−

π
2
π
2
),则tan
α+β
2
=(  )
A.
1
2

B. -2
C.
4
3

D.
1
2
或-2

∵已知方程x2+4ax+3a+1=0(a>1)的两根为tanα,tanβ,∴tanα+tanβ=-4a<0,tanα•tanβ=3a+1>4.
∴tan(α+β)=

tanα+ tanβ 
1−tanα• tanβ 
=
−4a
−3a
=
4
3
,∴tanα<0,tanβ<0.
再由α,β∈(−
π
2
π
2
)
,可得α,β∈(−
π
2
,0)
,故
α+β
2
(−
π
2
,0)

再由
4
3
=tan(α+β)=
2tan
α+β
2
1−tan2
α+β
2
,解得tan
α+β
2
=-2,或 tan
α+β
2
=
1
2
 (舍去),
故选B.