分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°;EF=AC,垂足为F连接DF
问题描述:
分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°;EF=AC,垂足为F连接DF
1 证明AC=EF
2求证ADFE为平行四边形
答
1,∠ACB=90,∠EFB=90,EB=AB,∠BAC=30,∠ACB=90,故∠ABC=60=∠EBF.故RT△ABC与RT△EFB为全等△.故AC=EF.2,∠CAB=30,∠DAC=60,故∠DAF=90=∠AFE,因EF=AC,AC=AD,故EF=AD.两条边相等,夹角相等,故为平行四边形....