【高中数学】一动圆与定圆x+y+4y-32=0内切且过定点A(0,2),求动圆圆心P的轨迹方程.
问题描述:
【高中数学】一动圆与定圆x+y+4y-32=0内切且过定点A(0,2),求动圆圆心P的轨迹方程.
答
圆x+y+4y-32=0化为标准方程得到:x+(y+2)=36 圆心B(0,-2),半径6 设动圆半径是r,圆心C(x,y) 则r=AC 内切BC=6-r 所以AC+BC=6 所以是椭圆,AB是交点 则c=2,2a=6,a=3 b=9-4=5 所以x/5+y/9=1