已知a,b,c,d,属于全体实数,求证:a^4+b^4+c^4+d^4>=4abcd

问题描述:

已知a,b,c,d,属于全体实数,求证:a^4+b^4+c^4+d^4>=4abcd

a^4+b^4+c^4+d^4=(a^4+b^4)+(c^4+d^4)
=[(a^2)^2+(b^2)^2]+[(c^2)^2+(d^2)^2]
>=2a^2*b^2+2c^2*d^2=2[(ab)^2+(cd)^2]
>=2*2abcd=4abcd