已知关于X的一元二次方程X²+2(m+2)X+m²-5=0有两个实数根,且平方和比根的积大13,求m的值

问题描述:

已知关于X的一元二次方程X²+2(m+2)X+m²-5=0有两个实数根,且平方和比根的积大13,求m的值

韦达定理
x1+x2=-2(m+2)
x1x2=m^2-5
平方和比根的积大13:
x1^2+x2^2=x1x2+13
(x1+x2)^2-2x1x2=x1x2+13
(x1+x2)^2=3x1x2+13
代入
4(m+2)^2=3(m^2-5)+13
m^2+16m+18=0
m=-8±根号46
又判别式=4m^2+16m+16-4(m^2-5)>0
m>-9/4
所以
m=-8+根号46