解分式方程1/x(x-1) + 1/x(x+1) +1/(x+1)(x+2) +``` +1/(x+9)(x+10)=11/12

问题描述:

解分式方程1/x(x-1) + 1/x(x+1) +1/(x+1)(x+2) +``` +1/(x+9)(x+10)=11/12
如题 要具体讲解的、似乎是有两种答案呢、

1/x(x-n)={1/x - 1/(x-n)}/n...
所以该方程化简后得1/x - 1/(x+10)=11/12...
结果你自己算吧,是两个答案没错呢~我知道答案、但过程算到一半不会了、刚才打错了,是1/(x-1)-1/(x+10)=11/12 两边同时乘以(x-1)(x+10)得11=11(x-1)(x+10)/12 两边同时乘以12/11得12=(x-1)(x+10) 开括号并移项得x²-9x-22=0解出x=-11或x=2不好意思、我最近脑子有点短路、你能再具体点么?就是把所有的步骤都写出来、拜托了、谢谢1/(x-1)-1/(x+10)=11/12两边同时乘以(x-1)(x+10)得(x+10) - (x-1) = 11(x-1)(x+10)/12 即 11=11(x-1)(x+10)/12两边同时乘以12/11得12=(x-1)(x+10)开括号得12=x²-9x-10移项得x²-9x-22=0即(x+11)(x-2)=0解出x=-11或x=2