(1+sinx)/cosx=(1+tanx/2)/(1-tanx/2)证明

问题描述:

(1+sinx)/cosx=(1+tanx/2)/(1-tanx/2)证明

左边=[(Cx/2)^2+(Sx/2)^2+2(Cx/2)(Sx/2)]/(Cx/2)^2-(Sx/2)^2=(tanx/2+1)^2/1-(tanx/2)^2{分子分母除(cosx/2)^2}=右边