设f(x)是R上的函数.且满足f(0)=1,并且对任意实数x ,y,有f(x-y)= f(x)-y(2x-y+1),求f(x)的表达式
问题描述:
设f(x)是R上的函数.且满足f(0)=1,并且对任意实数x ,y,有f(x-y)= f(x)-y(2x-y+1),求f(x)的表达式
答
因为对一切实数x,y都成立
令x=y
则f(x-y)=f(x)-y(2x-Y+1)
等价于f(0)=f(x)-x(2x-x+1)
又因为f(0)=1
所以f(x)-x(2x-x+1)=1
解得f(x)=x^2+x+1