已知二次函数y=f(x)的图像过点(0,3),且方程f(x)=0的两根的平方和为10,对于任意x都有f(1+x)=f(1-x),则f(x)
问题描述:
已知二次函数y=f(x)的图像过点(0,3),且方程f(x)=0的两根的平方和为10,对于任意x都有f(1+x)=f(1-x),则f(x)
答
二次函数y=f(x)的图像过点(0,3),所以c=3对于任意x都有f(1+x)=f(1-x),所以对称轴为x=(1+x+1-x)/2=1所以可以设函数为f(x)=ax²-2ax+3又ax²-2ax+3=0的两根的平方和为10x1+x2=2x1x2=3/ax1²+x2²=(x1+x...