若log3(7)·log2(9)·log49(a)=log4(1/2),则a的值等于

问题描述:

若log3(7)·log2(9)·log49(a)=log4(1/2),则a的值等于

利用换底公式,将上式换成以10为底的常用对数,即:[(lg7)/(lg3)]·[(lg9)/(lg2)]·[(lga)/(lg49)]=[lg(1/2)]/(lg4) 公式log a (m)^n =n·loga(m)上式可继续化简为:[(lg7)/(lg3)]·[(2lg3)/(lg2)]·[(lga)/(2lg7)]=(-...