已知实数x,y满足x²+(√2)y=√3,y²+(√2)x=√3,且x≠y,求x+y和xy的值.

问题描述:

已知实数x,y满足x²+(√2)y=√3,y²+(√2)x=√3,且x≠y,求x+y和xy的值.

这个应该用韦达定理,x+y=-b/a,xy=c/a
上题中a=1,b=√2,c=√3
∴x+y=-√2
xy=-√3

x²+(√2)y=√3,y²+(√2)x=√3可得
x²+(√2)y=y²+(√2)x
(x-y)(x+y)-√2(x-y)=0
(x-y)(x+y-√2)=0
因为x≠y,所以x+y=√2
x+y=√2平方后得,
x²+y²+2xy=2
又因为x²+(√2)y=√3,y²+(√2)x=√3
所以x²+(√2)y+y²+(√2)x=2√3
即x²+y²=2√3-√2(x+y)=2√3-2
代入x²+y²+2xy=2
xy=2-√3

x+y=√2
xy=2-√3
将两式相加整理得x²+y²+√2(x+y)=2√3即(x+y)²-2xy+√2(x+y)=2√3
将两式相减整理得x²-y²=√2(x-y)即(x+y)*(x-y)=√2(x-y)
因为x≠y 所以由第二式得x+y=√2
带入一式的xy=2-√3