已知函数f(x)=4x-kx-8 ,若y=f(x)在区间(-∞,2]上有最小值为-12,

问题描述:

已知函数f(x)=4x-kx-8 ,若y=f(x)在区间(-∞,2]上有最小值为-12,
不要抄袭百度的答案,我觉得那个错的 我算得k=8或k=-8 但是 当k=8时,对称轴-b/2a=-8/(2x4)=-1 当k=-8时,对称轴-b/2a=-(-8)/(2x4)=1 和百度上的答案不一样

分情况讨论,对称轴x=k/8 若这个区间在对称轴左边,即k≥16时,最小应该是f(2)=8-2k=-12 k=10,舍去 若2在对称轴右边,则最小的就是f(k/8)=(k/16)-(k/8)-8=-k/16-8=-12 k=±8