fx=sin^2x-cosx+1 (-π/2≤x≤π/2 ) 求值

问题描述:

fx=sin^2x-cosx+1 (-π/2≤x≤π/2 ) 求值

f(x)=sin²x-cosx+1
=1-cos²x-cosx+1
=-cos²x-cosx
=-(cosx +1/2)² +1/4
-π/2≤x≤π/2 0≤cosx≤1 1/2≤cosx+1/2≤3/2
1/4≤(cosx+1/2)²≤9/4 -9/4≤-(cosx+1/2)²≤-1/4
-2≤-(cosx+1/2)²+1/4≤0
-2≤f(x)≤0,函数的值域为[-2,0],最大值为0,最小值为-2