如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.

问题描述:

如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.

(1)求抛物线的解析式.
(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.

(1)设抛物线的解析式为:y=a(x+1)(x-3),则:a(0+1)(0-3)=3,a=-1;∴抛物线的解析式:y=-(x+1)(x-3)=-x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:3k+b=0b=3,解得k=−1b=3;故直线BC的解...
答案解析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=12MN(OD+DB)=12MN•OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.
考试点:二次函数综合题.
知识点:该二次函数题较为简单,考查的知识点有:函数解析式的确定、函数图象交点坐标的求法、二次函数性质的应用以及图形面积的解法.(3)的解法较多,也可通过图形的面积差等方法来列函数关系式,可根据自己的习惯来选择熟练的解法.