正方体截去一个角,求证:截面是锐角三角形

问题描述:

正方体截去一个角,求证:截面是锐角三角形

正方体截去一角所成三角形三边均在其他个面之内,设正方体边长为1,则这三边最大值为根号2,最小值大于1,取截面三角形任意一角,令其三边边为a,b,c,则其对应的角为A,B,C,于是cosA=(b^2+c^2-a^2)/2bc其中bc为正,令y=b^2+c...