过点P(4,-4)的直线l被圆C:x+y-2x-4y-20=0截得的弦AB的长度为8,求直线l的方程.

问题描述:

过点P(4,-4)的直线l被圆C:x+y-2x-4y-20=0截得的弦AB的长度为8,求直线l的方程.

由于圆C的方程为:x+y-2x-4y-20=0 ——>(x-1)^2+(y-2)^2=25 所以点C的坐标为(1,2) 设点A的坐标为(xo,yo),点B的坐标为(x,y) 满足:(xo-1)^2+(yo-2)^2=25```````````````````(1) (x-1)^2+(y-2)^2=25```````````````````````(2) 又因为过点P(4,-4)的直线l被圆C:x+y-2x-4y-20=0截得的弦AB的长度为8 所以:xo^2+yo^2+x^2+y^2=8^2``````````````````(3) 最后点A,B.C组成的直线l 根据斜率可得:(yo+4)/(xo-4)=(y-yo)/(x-xo)``````````````(4) 结合1.2.3.4 就可求得.