f(x)与g(x)均为(a,b)上的增函数,则f(x)·g(x)也是区间(a,b)上的增函数.
问题描述:
f(x)与g(x)均为(a,b)上的增函数,则f(x)·g(x)也是区间(a,b)上的增函数.
f(x)与g(x)在(a,b)上分别是递增递减函数,且g(x)≠0,则f(x)/g(x)在(a,b)上是递增函数
这两个命题是对是错?怎么证明
答
两个命题都是假命题.现就第一个命题举例说明,如f(x)=x-2与g(x)=-1/x均为(1,2)上的增函数,但f(x)·g(x)=-1+2/x却是区间(1,2)上的减函数.
又如f(x)=x-2与g(x)=1/x在(0,1)上分别是递增递减函数,且g(x)≠0,但f(x)/g(x)=x^2-2x在(0,1)上却是递减函数.