已知函数f(x)=根号2sin(2x+6π).x∈[π/12,π/3].求f(x)的值域.
问题描述:
已知函数f(x)=根号2sin(2x+6π).x∈[π/12,π/3].求f(x)的值域.
答
因为x∈[π/12,π/3],所以2x∈[π/6,2π/3],
即 sin2x∈[1/2,1]
又因为 2sin(2x+6π)=2sin(2x),
所以 2≥2sin(2x+6π)≥1
即 f(x)=根号2sin(2x+6π)的值域为[1,√2 ]。
答
f(x)根据诱导公式可化为2sin2x
x属于[π/12,π/3]
2x∈[π/6,2π/3]
作出y=2sinx图像可知值域为[1,2]
答
f(x)=(√2)sin(2x+6π)=(√2)sin(2x)
设y=2x,则:f(x)=(√2)siny
因为x∈[π/12,π/3],所以:y∈[π/6,2π/3]
显然,当y=π/2时,siny有最大值,即f(x)有最大值:f(x)|max=(√2)sin(π/2)=√2
当y=π/6时,siny有最小值,即f(x)有最小值:f(x)|min=(√2)sin(π/6)=√2/6
所以,f(x)的值域是:f(x)∈[√2/6,√2]