已知x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,求xy(x+y)+yz(y+z)+zx(z+x)的值

问题描述:

已知x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,求xy(x+y)+yz(y+z)+zx(z+x)的值
已知x+y+z=1,x²+y²+z²=2,x³+y³+z³=3,求xy(x+y)+yz(y+z)+zx(z+x)的值

∵(x+y+z)(x²+y²+z²)=x³+y³+z³+x²(y+z)+y²(x+z)+z²(x+y)
∴1*2=3+xy(x+y)+yz(y+z)+zx(z+x)
∴xy(x+y)+yz(y+z)+zx(z+x)=2-3=-1