已知绝对值m-n-2与(mn-1)的平方互为相反数,求(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值.
问题描述:
已知绝对值m-n-2与(mn-1)的平方互为相反数,求(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)的值.
答
|m-n-2|=-(mn-1)²;
所以m-n-2=0;m=n+2;
mn-1=0;
原式=(-2mn+2m+3n)-(3mn+2n-2m)-(m+4n+mn)
=-2mn+2m+3n-3mn-2n+2m-m-4n-mn
=-6mn+3m-3n
=-6*1+3*2
=-6+6
=0;