有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(1)写出k为负数的概率;(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)

问题描述:

有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.

(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)

(1)∵共有3张牌,两张为负数,
∴k为负数的概率是

2
3

(2)画树状图

共有6种情况,其中满足一次函数y=kx+b经过第二、三、四象限,
即k<0,b<0的情况有2种,
所以一次函数y=kx+b经过第二、三、四象限的概率为
2
6
1
3

答案解析:(1)利用概率的计算方法解答;(2)由图表解答.
考试点:列表法与树状图法;一次函数图象上点的坐标特征;概率公式.
知识点:一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.
用到的知识点为:概率=所求情况数与总情况数之比.