如图,D、E是等边△ABC两边上的点,且AD=CE,连接AE、BD相交于点P. (1)求证:△ABD≌△CAE; (2)以AB为直径作半圆交AE于点Q,试求PQ/BP的值.
问题描述:
如图,D、E是等边△ABC两边上的点,且AD=CE,连接AE、BD相交于点P.
(1)求证:△ABD≌△CAE;
(2)以AB为直径作半圆交AE于点Q,试求
的值. PQ BP
答
(1)证明:∵△ABC为等边三角形,
∴AB=AC,∠BAD=∠C=60°,
在△ACE和△BAD中,
,
AB=AC ∠BAD=∠ACE AD=CE
∴△ABD≌△CAE(SAS);
(2)连接QB,
∵AB为直径,
∴∠AQB=90°,
∵△ABD≌△CAE,
∴∠CAE=∠ABD,
∴∠QPB=∠PAB+∠ABD=∠PAB+∠CAE=∠CAB=60°,
在Rt△PBQ中,∠PQB=90°,∠QPB=60°,
∴
=cos∠QPB=cos 60°=PQ BP
.1 2