各种特殊四边形的判定定义
各种特殊四边形的判定定义
如平行四边形,矩形,正方形,菱形等.
平行四边形定义
(1)如果一个四边形是平行四边形,那么这个四边形的一组对边平行且相等.
(简述为“平行四边形的对边平行且相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对边分别平行.
(简述为“平行四边形的对边平行”)
(3)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等.
(简述为“平行四边形的对边相等”)
(4)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等.
(简述为“平行四边形的对角相等”)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分.
(简述为“平行四边形的两条对角线互相平分”)
(6)平行四边形是中心对称图形,对称中心是两条对角线的交点.
(7)一般的平行四边形不是轴对称图形.
平行四边形判定
(1)两组对边分别相等的四边形是平行四边形.
(2)对角线互相平分的四边形是平行四边形.
(3)一组对边平行且相等的四边形是平行四边形.
(4)两组对边分别平行的四边形是平行四边形.
(5)两组对角分别相等的四边形是平行四边形.(不可直接证明为平行四边形)
矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等.
判定
( 1)对角线相等的四边形是矩形;( ×) (2)对角线互相平分且相等的四边形是矩形;(√)
(3)有一个角是直角的四边形是矩形;(×)
(4)有四个角是直角的四边形是矩形;(√)
(5)四个角都相等的四边形是矩形S;(√)
(6)对角线相等,且有一个角是直角的四边形是矩形;(×)
(7)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(8)对角线相等且互相垂直的四边形是矩形.(×)
说明:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与定理不同,则需要利用定义和判定定理证明或举反例,才能下结论.
正方形定义
同一平面内四条相同长度线段首尾顺次连接围成的封闭四边形.
四条边都相等且一个角是直角的四边形叫做正方形.
有一组邻边相等的矩形是正方形.
有一组邻边相等且一个角是直角的平行四边形是正方形.
有一个角为直角的菱形是正方形.
对角线平分,垂直且相等,并且交角为直角的四边形为正方形.
正方形判定方法
1:对角线相等的菱形是正方形.
2:对角线互相垂直的矩形是正方形,.对角线互相垂直,平分且相等的四边形是正方形.正方形是一种特殊的矩形.
3:四边相等,有三个角是直角的四边形是正方形.
4:一组邻边相等的矩形是正方形.
5:一组邻边相等且有一个角是直角的平行四边形是正方形.
6:四边均相等,对角线互相垂直平分且相等的四边形是正方形.
7:有一个角为直角的菱形是正方形.
8:依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.正方形的中点四边形是正方形.
9:既是菱形又是矩形的四边形是正方形.
菱形定义
一组邻边相等的平行四边形是菱形(rhombus)
四边相等的四边形是菱形(rhombus)
菱形判定
一组邻边相等的平行四边形是菱形
四边相等的四边形是菱形
关于两条对角线都成轴对称的四边形是菱形
对角线互相垂直且平分的四边形是菱形.
依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.菱形的中点四边形是矩形(对角线相等的四边形的中点四边形定为矩形) ,对角线互相垂直的四边形的中点四边形定为菱形.
菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.