定长为3的线段AB的两端在抛物线y^2=x上移动,记线段AB中点为M,求点M到y轴的最短距离,并求此时M坐标.什么是第二定义啊。

问题描述:

定长为3的线段AB的两端在抛物线y^2=x上移动,记线段AB中点为M,求点M到y轴的最短距离,并求此时M坐标.
什么是第二定义啊。

因为M是AB的中点,所以M到y轴的距离等于A,B两点到y轴的距离的和的一半.因为点A在抛物线上,所以A到y轴的距离=A到焦点F(0.25,0)距离-0.25,B点也是一样.所以M到y轴距离表示为d=(AF+BF-0.5)÷2.由三角形两边和大于第三...