如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为( )A. 30°B. 45°C. 60°D. 90°
问题描述:
如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为( )
A. 30°
B. 45°
C. 60°
D. 90°
答
如图,以D为坐标原点,DA所在直线为x轴,DC所在线为y轴,DP所在线为z轴,建立空间坐标系,
∵点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1
∴A(1,0,0),P(0,0,1),B(1,1,0),D(0,0,0)
∴
=(1,0,-1),
PA
=(-1,-1,0)
BD
∴cosθ=
=
•
PA
BD |
|×|
PA
|
BD
=−−1
×
2
2
1 2
故两向量夹角的余弦值为
,即两直线PA与BD所成角的度数为60°.1 2
故选C
答案解析:本题求解宜用向量法来做,以D为坐标原点,建立空间坐标系,求出两直线的方向向量,利用数量积公式求夹角即可
考试点:异面直线及其所成的角.
知识点:本题考查异面直线所角的求法,由于本题中所给的背景建立空间坐标系方便,故采取了向量法求两直线所成角的度数,从解题过程可以看出,此法的优点是不用作辅助线,大大降低了思维难度.