如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C. 求证:1/PC=1/2(1/PA+1/PB).
问题描述:
如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.
求证:
=1 PC
(1 2
+1 PA
).1 PB
答
证明:连PO交ST于点D,则PO⊥ST;连SO,作OE⊥PB于E,则E为AB中点,于是PE=PA+PB2因为C、E、O、D四点共圆,所以PC•PE=PD•PO又因为Rt△SPD∽Rt△OPS所以SPPD=OPPS即PS2=PD•PO而由切割线定理知PS2=PA•PB所以PC•...