如图,矩形纸片ABCD,AB=8,BC=12,点M在BC边上,且CM=4,将矩形纸片折叠使点D落在点M处,折痕为EF,则AE的长为______.
问题描述:
如图,矩形纸片ABCD,AB=8,BC=12,点M在BC边上,且CM=4,将矩形纸片折叠使点D落在点M处,折痕为EF,则AE的长为______.
答
过点E作EG⊥BC,交BC于点G
Rt△EGM中,EG=AB=8,EM=ED=12-AE,MG=12-4-AE
∵EM2=EG2+MG2
∴(12-AE)2=64+(12-4-AE)2
∴AE=2.
答案解析:过点E作EG⊥BC,交BC于点G,Rt△EGM中,EG=AB=8,EM=ED=12-AE,MG=12-4-AE,且由勾股定理可得EM2=EG2+MG2列方程,解之可得AE=2.
考试点:翻折变换(折叠问题).
知识点:本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.