一.在平面直角坐标系xOy中,抛物线y=-1/2X2+bx+c与x轴交于A、B两点(点A在点B的左侧且A,B在原点两侧)与y轴交于点C,且OA=2 OC = 3

问题描述:

一.在平面直角坐标系xOy中,抛物线y=-1/2X2+bx+c与x轴交于A、B两点(点A在点B的左侧且A,B在原点两侧)与y轴交于点C,且OA=2 OC = 3
(1)求抛物线解析式
回答思路清晰准确的
(2)若点E在第一象限内的此抛物线上,且OE⊥BC于D,求点E的坐标.
(3)在抛物线的对称轴上是否存在一点P,使抛物线PA于PE之差的值最大?若存在,请求出这个最大值和点P的坐标,若不存在,请说明理由.
(图很简单就是个坐标系.)

分析:(1)已知了OA、OC的长,即可得出A、C两点的坐标,然后将两点坐标代入抛物线中即可求出抛物线的解析式.(2)不难得出B点坐标为(3,0),因此△OBC是等腰直角三角形,如果OE⊥BC,那么E点必为直线y=x与抛物线的交点...