证明∫x(f(x)^2)dx/∫xf(x)dx≤∫f(x)^2dx/∫f(x)dx(下线均为0.上限均为1)f(x)为在[0,1]上单调减少且恒大于零的连续函数
问题描述:
证明∫x(f(x)^2)dx/∫xf(x)dx≤∫f(x)^2dx/∫f(x)dx(下线均为0.上限均为1)
f(x)为在[0,1]上单调减少且恒大于零的连续函数
答
由f(x) > 0,原式等价于(∫{{0,1} t·f(t)²dt)·(∫{0,1} f(t)dt) ≤ (∫{{0,1} f(t)²dt)·(∫{0,1} t·f(t)dt).设F(x) = (∫{{0,x} f(t)²dt)·(∫{0,x} t·f(t)dt)-(∫{{0,x} t·f(t)²dt)·(∫{...