函数f(x)=2sin(wx+a),x∈R,其中w>0,-π<a≤π,若函数最小正周期为6π,且当x=π/2,f(x)取最大值,则( )A.f(x)在区间[-2π,0]上是增函数 B.f(x)在区间(-3π,-π]上是增函数C.f(x)在区间[3π,5π]上是减函数 D.f(x)在区间[4π,6π]上是减函数
问题描述:
函数f(x)=2sin(wx+a),x∈R,其中w>0,-π<a≤π,若函数最小正周期为6π,且当x=π/2,f(x)取最大值,则( )
A.f(x)在区间[-2π,0]上是增函数 B.f(x)在区间(-3π,-π]上是增函数
C.f(x)在区间[3π,5π]上是减函数 D.f(x)在区间[4π,6π]上是减函数
答
T=2π/w=6π
w=1/3
1/3*π/2+a=π/2
a=π/3
-π/2