已知当x=5时,二次函数y=x²+px+q有最小值-2 .求函数y=²+(q-15)x-p的图像的顶点坐标和对称轴方程以及y>=3时,x的取值范围.求函数y=x²+(q-15)x-p的图像的顶点坐标和对称轴方程以及y>=3时,x的取值范围。
问题描述:
已知当x=5时,二次函数y=x²+px+q有最小值-2 .
求函数y=²+(q-15)x-p的图像的顶点坐标和对称轴方程以及y>=3时,x的取值范围.
求函数y=x²+(q-15)x-p的图像的顶点坐标和对称轴方程以及y>=3时,x的取值范围。
答
y=x²+px+q=(x+p/2)2+q-p2/4即当x= -p/2时,y= q-p2/4则- p/2=5时,q-p2/4=-2得p=-10,q=23y=x²+(q-15)x-p= x²+8x+10=(x+4)2-6即顶点坐标为(-4,-6),对称轴方程为x=-4当y>=3时,则x²+8x+10>=3得...