已知a大于0,b大于0,a+b=1,求证(a+1/a)(b+1/b)大于或等于25/4.解法里面有一步不懂.

问题描述:

已知a大于0,b大于0,a+b=1,求证(a+1/a)(b+1/b)大于或等于25/4.解法里面有一步不懂.
(a+1/a)(b+1/b)
=(a^2+1)/a*(b^2+1)/b
=(a^2b^2+a^2+1+b^2)/ab
=[a^2b^2+(a+b)^2-2ab+1]/ab
=[a^2b^2+(1-2ab)+1]/ab
=[(ab-1)^2+1]/ab
(ab-1)^2+1≥25/16 #
0

(a+1/a)(b+1/b)
=(a^2+1)/a*(b^2+1)/b
=(a^2b^2+a^2+1+b^2)/ab
=[a^2b^2+(a+b)^2-2ab+1]/ab
=[a^2b^2+(1-2ab)+1]/ab
=[(ab-1)^2+1]/ab
∵(a+b)/2≥√(ab)
∴ab≤[(a+b)/2]²=1/4
0