证明:曲面积分∫L xln(x^2+y^2-1) dx+yln(x^2+y^2-1)dy在区域x^2+y^2>1内与路径无关.
问题描述:
证明:曲面积分∫L xln(x^2+y^2-1) dx+yln(x^2+y^2-1)dy在区域x^2+y^2>1内与路径无关.
答
令P = xln(x² + y² - 1)、Q = yln(x² + y² - 1)
∂P/∂y = 2xy/(x² + y² - 1)
∂Q/∂x = 2xy/(x² + y² - 1)
∵∂P/∂y = ∂Q/∂x
∴这个曲线积分的值与x² + y² > 1内的路径无关.