a,b,c是△ABC的三边长,且关于x的方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.
问题描述:
a,b,c是△ABC的三边长,且关于x的方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实根,求证:这个三角形是直角三角形.
答
证明:由原方程,得
(b+c)x2-2ax-b+c=0,
∵关于x的方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实根,
∴△=4a2-4(b+c)(-b+c)=0,
即a2-c2+b2=0,
∴a2+b2=c2,
∴这个三角形是直角三角形.