求y=(x^2+8)/(x-1) (x>1)的最小值
问题描述:
求y=(x^2+8)/(x-1) (x>1)的最小值
答
因为x>1
所以x-1>0
所以y=(x^2+8)/(x-1)
=[(x-1)^2+2(x-1)+9]/(x-1)
=(x-1)+9/(x-1)+2
≥2√[(x-1)*9/(x-1)]+2
=2*3+2
=8