已知函数fx=-根号2sin(2x+π/4)+6sinxcosx-2cos²x+1 x属于R
问题描述:
已知函数fx=-根号2sin(2x+π/4)+6sinxcosx-2cos²x+1 x属于R
求fx最小正周期及单调递增区间
求fx在0-π/2上最大值最小值
答
f(x)=-sin2x-cos2x+3sin2x-cos2x=2sin2x-2cos2x=2根号2sin(2x-π/4)T=2π/2=π-π/2+2kπ≤2x-π/4≤π/2+2kπ k属于Z-π/8+kπ≤x≤3π/8+kπ递增区间[-π/8+kπ,3π/8+kπ]在0-π/2上最大值为2根号2,x=3π/8最小...