定义在R上的函数f(x)既是奇函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0.π/2]时f(x)=sinx.
问题描述:
定义在R上的函数f(x)既是奇函数又是周期函数,若f(x)的最小正周期是π,且当x∈[0.π/2]时f(x)=sinx.
1.求当x∈[-π,0]时,f(x)解析式;
2求当f(x)≥1/2时,x取值范围
答
(1) 当x∈(-π/2,0]时,-x∈[0,π/2),所以 f(x)=-f(-x)=-sin(-x)=sinx;
当x=-π/2时,f(x)=f(-π/2)=f(-π/2+π)=f(π/2)=1;
当x∈[-π,-π/2)时,x+π∈[0,π/2],所以 f(x)=f(x+π)=sin(x+π)=-sinx;
从而 ┌-sinx,x∈[-π,-π/2),
f(x)= │ 1,x=-π/2,
└sinx,x∈(-π/2,0]
(2)当x∈(-π/2,π/2]时,f(x)=sinx,令sinx≥1/2,解得 π/3≤x≤π/2,
因为周期为π,所以x的取值范围是
kπ+π/3≤x≤π/2+kπ ,k是整数.