已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.
问题描述:
已知:如图,在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD交于点F,求证:AE=BF.
答
证明:∵四边形ABCD是正方形,AE⊥BF,
∴∠DAE+∠AED=90°,∠DAE+∠AFB=90°,
∴∠AED=∠AFB,
又∵AD=AB,∠BAD=∠D,
∴△AED≌△ABF,
∴AE=BF.