设F1,F2是双曲线x2/16-y2/9=1的的两个焦点,P是双曲线上的一点,已知∠F1PF2=60°,求点P到F1,F2两点距离之和

问题描述:

设F1,F2是双曲线x2/16-y2/9=1的的两个焦点,P是双曲线上的一点,已知∠F1PF2=60°,求点P到F1,F2两点距离之和

由题意,有 a=4,b=3,c=5 ∴||PF1|-|PF2||=2a=8,|F1F2|=2c=10 由余弦定理,有 |F1F2|^2=|PF1|^2+|PF2|^2-2|PF1||PF2|cos,即 100=|PF1|^2+|PF2|^2-|PF1||PF2| ① 又∵||PF1|-|PF2||^2=|PF1|^2+|PF2|^2-2|PF1||PF2|=64 ②...