|a-2|+(ab-c²)=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.+1/(a+2006)(b+2006)的值

问题描述:

|a-2|+(ab-c²)=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.+1/(a+2006)(b+2006)的值

|a-2|+(ab-2)平方=0,a-2=0,ab=2所以a=2,b=1从而1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.+1/(a+2006)(b+2006)=1/1×2+1/2×3+1/3×4+.+1/2007×2008=1-1/2+1/2-1/3+1/3-1/4+.+1/2007-1/2008=1-1/2008=2007/2008...