若x,y为任意实数 求x^+4xy+5y^+4x+2y+18的最小值
问题描述:
若x,y为任意实数 求x^+4xy+5y^+4x+2y+18的最小值
答
x^+4xy+5y^+4x+2y+18
=[(x+2y)^2+4(x+2y)+4]+y^2-8y+2y+18
=[(x+2y)^2+4(x+2y)+4]+(y-3)^2+5
=(x+2y+2)^2+(y-3)^2+5
因为:(x+2y+2)^2>=0,(y-3)^2>=0
所以:(x+2y+2)^2+(y-3)^2+5≥5
当x+2y+2=0,y-3=0时等号成立
y=3,x=-8时
最小值5