离散型随机变量与连续型随机变量的区别与特点~

问题描述:

离散型随机变量与连续型随机变量的区别与特点~

我是高三学生,这个问题很难回答,不妨想像一下现实例子,也许会好一点,作多了就好了.我就是这么过来的.加油!!!!!1

先说一个熟悉的内容,数列与函数.
当然数列也是函数,但它的取值是自然数,取值是离散的,
而一般的函数取值是某一个区间,在这区间内取值往往是可以连续的.
离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定,
变量取值只能取离散型的自然数,就是离散型随机变量,
比如,一次掷20个硬币,k个硬币正面朝上,
k是随机变量,
k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数√20,
因而k是离散型随机变量.
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量,
比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,
x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、√20等,因而称这随机变量是连续型随机变量.