在三角形ABC中,分别以AC,BC为边向形外作等边三角形ACD,BCE,BD与AE相交于M,连接CM,求证:CM平分角DME
问题描述:
在三角形ABC中,分别以AC,BC为边向形外作等边三角形ACD,BCE,BD与AE相交于M,连接CM,求证:CM平分角DME
答
证明:
∵⊿ACD和⊿BCE都是等边三角形
∴AC=DC,BC=EC,∠ACD=∠BCE=60º
∴∠ACD+∠ACB=∠BCE+∠ACB
即∠DCB=∠ACE
∴⊿DCB≌⊿ACE(SAS)
∴BD=AC,S⊿DCB=S⊿ACE
作CM⊥BD于M,CN⊥AE于N
则S⊿DCB=½CM×BD,S⊿ACE=½CN×AE
∴CM =CN【或不用写面积,直接写全等三角形对应边上的高相等】
∴CM平分∠DME【到角两边的距离相等的点在角的平分线上】